A simple and efficient algorithm to estimate daily global solar radiation from geostationary satellite data
نویسندگان
چکیده
Surface global solar radiation (GSR) is the primary renewable energy in nature. Geostationary satellite data are used to map GSR in many inversion algorithms in which ground GSR measurements merely serve to validate the satellite retrievals. In this study, a simple algorithm with artificial neural network (ANN) modeling is proposed to explore the non-linear physical relationship between ground daily GSR measurements and Multi-functional Transport Satellite (MTSAT) all-channel observations in an effort to fully exploit information contained in both data sets. Singular value decomposition is implemented to extract the principal signals from satellite data and a novel method is applied to enhance ANN performance at high altitude. A three-layer feed-forward ANN model is trained with one year of daily GSR measurements at ten ground sites. This trained ANN is then used to map continuous daily GSR for two years, and its performance is validated at all 83 ground sites in China. The evaluation result demonstrates that this algorithm can quickly and efficiently build the ANN model that estimates daily GSR from geostationary satellite data with good accuracy in both space and time. 2011 Elsevier Ltd. All rights reserved.
منابع مشابه
New Technique for Global Solar Radiation Forecast using Bees Algorithm (RESEARCH NOTE)
Estimation of solar radiation is the most important parameter for various solar energy systems. Expensive devices are required to achieve the amount of solar radiation for a special region, therefore different models have been proposed by researchers to estimate the solar radiation that obviate using such devices. Nonlinear nature and excessive dependence on the meteorological parameters of the...
متن کاملA Novel Intelligent Water Drops Optimization Approach for Estimating Global Solar Radiation
Normal 0 false false false EN-US X-NONE AR-SA MicrosoftInternetExplorer4 Measurement of solar radiance demands expensive devices to be used. Alternatively, estimator models are used instead. In this paper, a new method based on the empirical equations is introduced to estimate the monthly average daily global solar radiation on a horizontal surface. The proposed method uses Intelligent Water ...
متن کاملAn Algorithm for the Retrieval of Aerosol Optical Depth from Geostationary Satellite Data in Thailand
An algorithm was developed to estimate aerosol optical depth (AOD) from geostationary satellite data. The 6S radiative transfer computer code was employed to generate a look-up table (LUT) which incorporates several combinations of satellite-derived variables including earthatmospheric reflectivity, atmospheric reflectivity and surface albedo. The parameterization of the satellite-derived atmos...
متن کاملEstimating and modeling monthly mean daily global solar radiation on horizontal surfaces using artificial neural networks
In this study, an artificial neural network based model for prediction of solar energy potential in Kerman province in Iran has been developed. Meteorological data of 12 cities for period of 17 years (1997–2013) and solar radiation for five cities around and inside Kerman province from the Iranian Meteorological Office data center were used for the training and testing the network. Meteorologic...
متن کاملNet Radiation Estimated from the FY-2D Data over the Source Region of the Yellow River
Numerous studies have developed algorithms for estimating the net radiation by satellite remote sensing data obtained under clear sky conditions using polar orbiting meteorological satellite. However, estimating net radiation under cloudy sky conditions using geostationary meteorological satellites with remote sensing sensors remains a significant challenge. In this paper, we developed algorith...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011